Power Connectivity

Jun. 2017 Ver 3.1 Eng Acmex Co., Ltd.

AMX85X2 Series

Company Profile 2. Power Connectivity 3. Product 8 Application Example Case

4. Technology Roadmap 5. New Product AMX85X2 6. Marketing Strategy

Power Connectivity

1.Company Profile

Motto of ACMEX

ACME

Acmex always steps forward to the peak of new technology. Based on ASIC design, we apply our own IP to many fields.

We overcome limits from former technology, and value the convergence between chemistry, environment, machinery, energy, space exploration, and aviation above electronics

EXPAND

Accumulated essence of technology expands the scope of fields. With improved productivity rooted in new perspective, we provide new solution that could not solve under the former technologies.

BACK TO BASIC

As technology demands its complexity and reaches at advanced technology, we have noticed importance of pure, distinct and reliable designs. For the solution, we always begin at foundation.

It is started with a mobile phone

We have experienced designing electronic parts, which modules and equipment in mobile phones from its 1st generation to smartphone's. Based on that, the modular system and ASIC(Application Specific Integrated Circuit) became the essence in our company. The modular system and ASIC, these were the key solution, to know effect of noise and EMI and its prevention in electronics.

New Wave

Mankind is facing a new wave with the advent of the smartphone, which is friendly accessible. That is, the advanced concepts, such as cloud computing system, "IoT", "Connected Car" and "Connected Life". Mobile-centric world is becoming real nowadays.

Fusion and Distinction

As the process of hybrid and expanding volume and elaborate controls is intensified, the components and their complexity are going bigger, so that noise and crashing between parts must be increased. This causes unexpected problem against original design.

The high-tech industry requires the product, which is reliable, refined, highly graded and distinctive. This is very essential when you come into the production or design.

We always have focused on noise and problems of EMI, and here, we offer a new solution to you for matter of noise that never solved through the entire industry.

Development of electronic fuel pump relay

In 2010, Daelim Honda(presently known as Daelim Motor) had engine problems on new car model, and Sun Hybrid straightly noticed that this is a result of noise and EMI in the system. This is why we developed a new PCB type product, called SHB2070-20A.

With this product, we had provided relays in last five years in Daelim applied by "Pin-to-Pin module" through the semiconductor circuit system instead of simple SSR. It shows you Sun Hybrid's unique technology that can survive in any condition.

Diversified and Economically Friendly

In many years of field confirmation, SHB2070 has been proved as stability and performance. Now, the new product is nearly complete; this new series(tentatively named "AMX85X2") has one module system and includes 20A,30A, 60A and even 90A. This launch will bring a new sensation for semiconductor market over 20A that we define as Power connectivity, and create a synergy with entire industry above car manufacture, such as home electronic appliances, ship, space air, heavy equipment and mechanic.

"No EMI. No Noise " ٠

Power Connectivity

2. Power Connectivity

We provide Power-connectivity solution based on Application Specific Integrated Circuit.

Power-connectivity, the system which is miniaturized and integrated and much powerful and efficient that can follow various demands in the world.

Our Power-connectivity solution breaks the limits from old circuits, and again, you will have satisfaction on its efficiency and stability.

Power Connectivity

Power Connectivity? "Smart High-side Power Analog Switching Device"

Electronic power switch Relay Controller

Heavy current (More than 20A)

No EMI

More accuracy control

Lightening Compact design

No Noise

Design Realm

Passive Components

Power Connectivity Application are

Our own IP

Analog IP	SoC / Digital IP	Driver IC
 Voltage Reference Circuit (BGR : Band-Gap Reference) Current Reference Circuit Temperature Compensation Temperature Measurement CMOS OPAMP Bias Circuit Power Circuit, Management DC-DC Converter (Booster) ADC, DAC Frequency Adjustable OSC Programmable Gain AMP (PGA) Anti-Aliasing Filter (AAF) 	 High Speed/Low power SRAM Image enhancement Algorithm for OLED IEP (Image Enhancement Processor) MPE (Moving Picture Enhancement) Interfaces & Control Circuits for Driver IC Trimming Circuit (OTP/MTP) Serial Interface (SPI) Control SoC consist of MCU (Micro- Controller Unit),CPU(licensed IP), RAM, ROM, INTC, Timer, ADC, OSC, GPIO, LCD Driver. 	 AM-OLED Driver IC Mobile TFT-LCD Driver IC PM-OLED Driver IC Color STN-LCD Driver IC MSTN, TN LCD Driver IC LED Driver IC AC Power Driver IC

POWE Connectivity

3. Product & Application Example Case

Our product SHB2070(20A)

Equivalent Spec Solenoid Relay

Fitment List:

Sachs Limbo 25 MA (1995-1996) Sachs Limbo 25 MA Basic (1997) Sachs Limbo 25 SA (1998-2000) Sachs Limbo 50 LM (1997) Sachs Limbo 50 M (1995-1997) Sachs Reggae 50 (1994-1997) Sachs Reggae 50 RS (1996-1997) Sachs Splinter 50 (1994-1997) Sachs Squab 50 (1996) Sachs Squab 50 Junior (1997) SYM Citycom 125 (2009-2011) SYM Citycom 300 i (2009-2011) SYM GTS 125 Joymax (2005-2009) SYM GTS 250 (2005-2008) SYM GTS 250 Evo i (2009) SYM HD 125 Evo (2009-2011) SYM Jet Euro-X 100 (2005-2007) SYM Joyride 125 Evo (2010-2011) SYM Joyride 200 (2005-2007) SYM Mio 100 (2006-2008) SYM Quad Lander 200 (2010) SYM Quad Lander 200 TrackRunner (2005-2009) SYM Quad Lander 250 (2005-2010) SYM Quad Lander 300 (2007-2009) SYM Quad Lander 300 S (2010-2011)

SHB2070 specifications

Features

- Overload protection
- Current limitation
- Short circuit protection
- Over temperature protection
- Over voltage protection (including load dump)
- Clamp of negative voltage at output
- Diagnostic feedback with load current sense
- Open load detection via current sense
- Electrostatic discharge (ESD) protection

Comparison: Application of a substitute product

Common Relay

- Using coil
- Limited life cycle
- EMI problem
- Noise problem

SHB2070 Power connectivity

- Using Semiconductor circuit & PCB
- Semi-permanent Life Cycle
- No EMI
- No Noise
- Using Special Passive components

Comparative advantage

Usage of electronic control modules along with electronic components has consequently generated the need for smaller relays capable of carrying high current loads

- The market size is CAGR of 6%
- Pin to Pin method is applied in 20% After Market of Embeded Market

Part No. 38500-CB4-4000

DALIM Wire Harness

Ref No.	부품번호	영문부품명	부 품 명	수 량	데 아	· 오 환	시작일
12	38500-BA4-0010	RELAY ASS'Y, LIGHT	라이트 릴레이 앗세이	3	Y	Y	20090618
	38500-BA4-0010	RELAY ASS'Y, LIGHT	라이트 릴레이 앗세이	2	Υ		20120102
12-1	38500-CB4-4000	RELAY ASS'Y, FUEL PUMP	휴엘 펌프 릴레이 앗세이	1	Y		20120102
13	38501-SE6-9810	RELAY COMP., START	스타트 릴레이 콤프	3	Ν	Y	20090618
	38501-SE6-9810	RELAY COMP., START	스타트 릴레이 콤프	2	Ν		20120102
13-1	38501-CB4-4000	RELAY COMP., FUEL PUMP	휴엘 펌프 릴레이 콤프	1	Ν		20120102

Technical Comparison

Data from Dalim(Honda)

classification Item	Power connectivity SHB2070	Omron(Japan)	Bosch(German)	Taiwan/China
Capacity	20V/30A	20V/30A	20V/30A	20V/30A
Employ(12V/24V)	12/24V	12/24V	12/24V	12/24V
Exiting current	max.20~30mA	max.100~200mA	max.100~200mA	max.100~200mA
Anti-shock	Semi-permanent	KS R 1034 1류 B종	KS R 1034 1류 B종	KS R 1034 1류 B종
Durability	Semi-permanent	Limited	Limited	Limited
EMI/noise	ZERO	n/a	n/a	n/a
Life cycle	Semi-permanent	limited	Limited	limited

Power Connectivity

5. Technology Roadmap

Power connectivity for car

Application for Hyundae Mortors 2014 Avante Control Box(2011 developed)

- Using Omron case, Applying Power connectivity Application
- No EMI
- 20 sets tested

Integrated Module box for E/V & Connected car(Target for 2020)

Common Relay & Fuse box for Car

ACMEX Power Connectivity Module

Under Developing Project

ACMEX Power Connectivity Module will be an advanced power management system providing high-side and highperformance auxiliary inverter for hybrid and electric vehicle. These modules integrate optimized gate drive of the built-in our ACM85X2 technology to minimize EMI, while also protecting various features, and compacter than other products.

- 40V-360A 3 phase MOSFET module for Automotive with low loss and high-speed for motor control applications
- 360V-400A Relay Device
- Integrated gate drivers, under voltage lockout, Over-current shutdown, Temperature Sensing unit and Fault reporting
- Automotive qualified (AEC-Q100)

Power Connectivity

5. New Product AMX85X2

AMX8532 AMX8562 AMX8592

Features

- Overload protection
- Current limitation
- Short circuit protection
- Overtemperature protection
- Overvoltage protection
- Diagnostic feedback with load current sense
- Open load detection via current sense
- Electrostatic discharge (ESD) protection
- Bridge diode rectified input (free input direction)

Application

- Power switch with current sense diagnostic feedback for 12V and 24V DC grounded loads
- Most suitable for loads with high inrush current like lamps and motors; all types of resistive and inductive loads
- Replaces electromechanical relays, fuses and discrete circuits

General Description

N channel power MOSFET with charge pump, bridge diode rectified input and diagnostic feedback with load current sense, integrated in high performance BCDMOS technology.

Fully protected by embedded protection.

AMX8532

Rev.O – APR.2017

PRELIMINARY

Device Summary Operating Voltage VDD 5.0 ... 24 V Load Current 30 ١L А **On-state Resistance** RON 6.0 mΩ Short circuit current limitation ILSC 100 А Overvoltage protection 44 V VDD(OV) 36 Output clamp VON(CL) V

PIN	Symbol	I/O	Function
1	IN1	I	Switch control signal inputs. Voltage difference between IN1
2	IN2	I	and IN2 great than 4V then the switch is On.
3	Sense	nse O Diagnostic feedback providing a sense current proportion to the load current.	
4	4		
5			Output to the load. The pins 4, 5, 6 and 7 must be shorted
6	001		with each other.
7			
TAB	VDD	Р	Positive power supply voltage,

PRELIMINARY

Maximum Ratings at T_j = 25 °C unless otherwise specified

Symbol	Parameter	Values	Unit
	Supply Voltage	40	V
VDU	Supply Voltage for short circuit protection	30	V
IL(SC)	Load current (short circuit current)	Self-limited	А
Tj Tstg	Operating temperature range Storage temperature range	-40 +150 -55 +150	°C
Ptot	Power dissipation (DC), TC ≤ 25 °C	170	W
Vin	Voltage Difference between IN1 and IN2	18	V

Electrical Characteristics

Load Switching Capabilities and Characteristics

Symbol	Parameter and Conditions at Tj = -40 +150 °C, Vbb = 12 V unless otherwise specified		Values			
Symbol			typ	max	Unit	
	On-state resistance (Tab to pins 4,5,6,7)					
Ron	I∟ = 30 A, Tj = 25 °C :		TBD	6.0	m0	
	IL = 30 A, Tj = 150 °C :		TBD	TBD	11122	
	VDD = 6V, IL = 30 A, Tj = 150 °C :		TBD	TBD		
١L	Nominal load current (Tab to pins 4,5,6,7) Von = 0.2 V, Tc = 85 °C	30			A	
IL(NOM)	Nominal load current, device on PCB TA = 85 °C, Tj ≤ 150 °C, VoN ≤ 0.2 V,	15	18		A	
IL(MAX)	Maximum load current (Tab to pins 1,2,6,7) VON = 1.8 V, Tc = 25 °C : VON = 1.8 V, Tc = 150 °C :	250 150		 	A	
ton toff	Turn-on time Turn-off time R∟ = 1Ω, Tj = 25°C	100 30		250 100	μs	

Electrical Characteristics

Operating Parameters

Symbol	Parameter and Conditions at Tj = -40 +150 °C, Vbb = 12 V unless otherwise specified		Values			
			typ	max		
VDD	Operating Voltage			24	V	
VDIN(u)	Undervoltage shutdown		3.0	4.5	V	
VDIN(ucp)	Undervoltage start of charge pump		4.5	6.0	V	
VDIN(Z)	Overvoltage protection (IL = 15mA) $T_j = -40 \ ^\circ\text{C}$: $T_j = 25 \ \ +150 \ ^\circ\text{C}$:	44 42	 46		V	
IDD(off)	Standby current (VIN = 0) Tj = -40 +25 °C : Tj = +150 °C :		20 30	30 50	μΑ	

Protection Functions

Symbol	Parameter and Conditions		Values			
Зушьог	at Tj = -40 +150 °C, Vbb = 12 V unless otherwise specified	Min	typ	max	Unit	
	Short circuit current limit (Tab to pins 4,5,6,7)					
	VON = 12 V, time until shutdown max. 250 µs					
IL(sc)	Tc =-40°C :		TBD		A	
	Tc =25°C :		TBD	180		
	Tc =+150°C :		TBD			
td(sc)	Short circuit shutdown delay after input control (VIN > 4.0V)		180	300	μs	
VON(sc)	Short circuit shutdown detection voltage		6		V	

PRELIMINARY

AMX8562 60A 24V Smart Analog Power Switch

Features

- Overload protection
- Current limitation
- Short circuit protection
- Overtemperature protection
- Overvoltage protection
- Diagnostic feedback with load current sense
- Open load detection via current sense
- Electrostatic discharge (ESD) protection
- Bridge diode rectified input (free input direction)

Application

- Power switch with current sense diagnostic feedback for 12V and 24V DC grounded loads
- Most suitable for loads with high inrush current like lamps and motors; all types of resistive and inductive loads
- Replaces electromechanical relays, fuses and discrete circuits

General Description

N channel power MOSFET with charge pump, bridge diode rectified input and diagnostic feedback with load current sense, integrated in high performance BCDMOS technology.

Fully protected by embedded protection.

Device Summary			
Operating Voltage	VDD	5.0 24	V
Load Current	IL	60	А
On-state Resistance	RON	3.0	mΩ
Short circuit current limitation	ILSC	200	А
Overvoltage protection	VDD(OV)	44	V
Output clamp	VON(CL)	36	V

PIN	Symbol	I/O	Function
1	IN1	I	Switch control signal inputs. Voltage difference between IN1
2	IN2	I	and IN2 great than 4V then the switch is On.
3	Sense	O Diagnostic feedback providing a sense current proportionation to the load current.	
4	4		
5			Output to the load. The pins 4, 5, 6 and 7 must be shorted
6	001		with each other.
7			
TAB	VDD	Р	Positive power supply voltage,

PRELIMINARY

Maximum Ratings at T_j = 25 °C unless otherwise specified

Symbol	Parameter	Values	Unit
	Supply Voltage	40	V
VDU	Supply Voltage for short circuit protection	30	V
IL(SC)	Load current (short circuit current)	Self-limited	А
Tj Tstg	Operating temperature range Storage temperature range	-40 +150 -55 +150	°C
Ptot	Power dissipation (DC), TC ≤ 25 °C	250	W
Vin	Voltage Difference between IN1 and IN2	18	V

Electrical Characteristics

Load Switching Capabilities and Characteristics

<u>Sumbal</u>	Parameter and Conditions at Tj = -40 +150 °C, Vbb = 12 V unless otherwise specified		Values			
Зутвої			typ	max	Unit	
	On-state resistance (Tab to pins 4,5,6,7)					
Devi	I∟ = 30 A, Tj = 25 °C :		TBD	3.0		
KON	IL = 30 A, Tj = 150 °C :		TBD	TBD	11122	
	VDD = 6V, IL = 30 A, Tj = 150 °C :		TBD	TBD		
١L	Nominal load current (Tab to pins 4,5,6,7) Von = 0.2 V, Tc = 85 °C	60			A	
IL(NOM)	Nominal load current, device on PCB TA = 85 °C, Tj ≤ 150 °C, VoN ≤ 0.2 V,	30	36		A	
	Maximum load current (Tab to pins 1,2,6,7)					
IL(MAX)	Von = 1.8 V, Tc = 25 °C :	400			A	
	Von = 1.8 V, Tc = 150 °C :	200				
ton	Turn-on time	100		250		
toff	Turn-off time	30		100	μs	
	$RL = 1\Omega, T_j = 25^{\circ}C$					

Electrical Characteristics

Operating Parameters

Symbol	Parameter and Conditions at Tj = -40 +150 °C, Vbb = 12 V unless otherwise specified		Values			
			typ	max		
VDD	Operating Voltage	5.0		24	V	
VDIN(u)	Undervoltage shutdown	1.5	3.0	4.5	V	
VDIN(ucp)	Undervoltage start of charge pump	3.0	4.5	6.0	V	
VDIN(Z)	Overvoltage protection (IL = 15mA) $T_j = -40 \ ^\circ\text{C}$: $T_j = 25 \ \ +150 \ ^\circ\text{C}$:	44 42	 46		V	
IDD(off)	Standby current (VIN = 0) Tj = -40 +25 °C : Tj = +150 °C :		25 40	40 65	μΑ	

Protection Functions

Symbol	Parameter and Conditions		Values			
Зушоо	at Tj = -40 +150 °C, Vbb = 12 V unless otherwise specified	Min	typ	max	Unit	
	Short circuit current limit (Tab to pins 4,5,6,7)					
	VON = 12 V, time until shutdown max. 250 µs					
IL(sc)	Tc =-40°C :		TBD		А	
	Tc =25°C :		TBD	280		
	Tc =+150°C :		TBD			
td(sc)	Short circuit shutdown delay after input control (VIN > 4.0V)		180	300	μs	
VON(sc)	Short circuit shutdown detection voltage		6		V	

PRELIMINARY

Features

- Overload protection
- Current limitation
- Short circuit protection
- Overtemperature protection
- Overvoltage protection
- Diagnostic feedback with load current sense
- Open load detection via current sense
- Electrostatic discharge (ESD) protection
- Bridge diode rectified input (free input direction)

Application

- Power switch with current sense diagnostic feedback for 12V and 24V DC grounded loads
- Most suitable for loads with high inrush current like lamps and motors; all types of resistive and inductive loads
- Replaces electromechanical relays, fuses and discrete circuits

General Description

N channel power MOSFET with charge pump, bridge diode rectified input and diagnostic feedback with load current sense, integrated in high performance BCDMOS technology.

Fully protected by embedded protection.

Device Summary			
Operating Voltage	VDD	5.0 24	V
Load Current	IL	90	А
On-state Resistance	RON	2.0	mΩ
Short circuit current limitation	ILSC	300	А
Overvoltage protection	VDD(OV)	44	V
Output clamp	VON(CL)	36	V

PIN	Symbol	I/O	Function		
1	IN1	I	Switch control signal inputs. Voltage difference between IN1		
2	IN2	IN2 I and IN2 great than 4V then the switch is On.			
3	Sense	0	Diagnostic feedback providing a sense current proportional to the load current.		
4					
5	OUT O	0	Output to the load. The pins 4, 5, 6 and 7 must be shorted		
6		with each other.			
7	7				
TAB	VDD	Р	Positive power supply voltage,		

PRELIMINARY

Maximum Ratings at T_j = 25 °C unless otherwise specified

Symbol	Parameter	Values	Unit
	Supply Voltage	40	V
VDD	Supply Voltage for short circuit protection	30	V
IL(SC)	Load current (short circuit current)	Self-limited	А
Tj Tstg	Operating temperature range Storage temperature range	-40 +150 -55 +150	°C
Ptot	Power dissipation (DC), TC ≤ 25 °C	300	W
Vin	Voltage Difference between IN1 and IN2	18	V

Electrical Characteristics

Load Switching Capabilities and Characteristics

Symbol	Parameter and Conditions		l lait		
Symbol	at Tj = -40 +150 °C, Vbb = 12 V unless otherwise specified	min	typ	max	Unit
	On-state resistance (Tab to pins 4,5,6,7)				
PON	I∟ = 30 A, Tj = 25 °C :		TBD	2.0	m0
KON	IL = 30 A, Tj = 150 °C :		TBD	TBD	11122
	VDD = 6V, IL = 30 A, Tj = 150 °C :		TBD	TBD	
١L	Nominal load current (Tab to pins 4,5,6,7) Von = 0.2 V, Tc = 85 °C				A
IL(NOM)	Nominal load current, device on PCB TA = 85 °C, Tj ≤ 150 °C, VoN ≤ 0.2 V,	45	57		A
LI (MAX)	Maximum load current (Tab to pins 1,2,6,7) VON = 1.8 V Tc = 25 °C :	500			Δ
	Von = 1.8 V, Tc = 150 °C :	250			
ton	Turn-on time	100		250	
toff	Turn-off time R∟ = 1Ω, Tj = 25°C	30		100	μs

Electrical Characteristics

Operating Parameters

Symbol	Parameter and Conditions		Values			
	at Tj = -40 +150 °C, Vbb = 12 V unless otherwise specified	min	typ	max		
VDD	Operating Voltage	5.0		24	V	
VDIN(u)	Undervoltage shutdown	1.5	3.0	4.5	V	
VDIN(ucp)	Undervoltage start of charge pump	3.0	4.5	6.0	V	
VDin(z)	Overvoltage protection (IL = 15mA) $T_j = -40 \text{ °C}$: $T_j = 25 \dots +150 \text{ °C}$:	44 42	 46		V	
IDD(off)	Standby current (VIN = 0) Tj = -40 +25 °C : Tj = +150 °C :		30 50	50 80	μΑ	

Protection Functions

Symbol	Parameter and Conditions		Values			
Symbol	at Tj = -40 +150 °C, Vbb = 12 V unless otherwise specified	Min	typ	max	Unit	
	Short circuit current limit (Tab to pins 4,5,6,7)					
	VON = 12 V, time until shutdown max. 250 µs					
IL(sc)	Tc =-40°C :		TBD		А	
	Tc =25°C :		TBD	350		
	Tc =+150°C :		TBD			
td(sc)	Short circuit shutdown delay after input control (VIN > 4.0V)		180	300	μs	
VON(sc)	Short circuit shutdown detection voltage		6		V	

PRELIMINARY

Package Information

Standard TO220 AB/7

Recommended PCB design for proper thermal management

Cross section of PCB: Metal PCB, FR4 with thermal via PCB

The PCB is the most critical factor determining the thermal characteristics of AMX8532. FR4 is the most commonly used material for PCBs, however FR4 has a very low thermal conductivity due to the FR4 dielectric material.

The following method is used to improve the thermal characteristics for an FR4 board by adding thermal vias between the top copper layer and the bottom copper layer.

Better thermal performance can be achieved by using a metal PCB which has a much better

thermal conductivity and can improve the thermal dissipation

Marketing Strategy

Domain the market in advance

рынок

선점하라

chiếm trước

قوُس

抢先占领

occupation avant